[image: A logo for a company

Description automatically generated]
[bookmark: _megtcp3fvgra]Secure API Design Practices
[bookmark: _1mjuf3sh57jz]Document Control

	Document Title: 
	Secure API Design Practices

	Version: 
	1.0

	Document ID: 
	

	Approval Date:
	

	Owner: 
	Software Security Group

	Approver: 
	Chief Information Security Officer




Approved by: ____________________________________



This template is developed by KLC Consulting, Inc. https://klcconsulting.net
You are free to use this template under the MIT license.


[bookmark: _slh9z0oj2obs]
1. Introduction
In the era of digital connectivity, APIs are vital for seamless interaction between different software systems. At [Company Name], our Secure API Design Practices are developed to integrate robust security measures into our API development process, ensuring the protection of sensitive data and systems. This document provides detailed practices to guide our teams in creating secure and efficient APIs.
[bookmark: _mraq3rb85vq5]2. Scope
These practices apply to all teams within [Company Name] involved in the design, development, deployment, and maintenance of APIs, particularly those handling sensitive or private data.
[bookmark: _hhan68o9ryfs]3. Expanded Secure API Design Practices
[bookmark: _9ddgaxm70u79]3.1 Authentication and Authorization
· Use OAuth 2.0 for client-server authentication and authorization, ensuring access tokens are short-lived and securely stored.

· Implement strong authentication methods, including Multi-Factor Authentication (MFA), especially for APIs accessing critical data.

· Clearly define and enforce user roles, using Role-Based Access Control (RBAC) to manage user capabilities within the API.
[bookmark: _6pqzx4s6pjcp]3.2 Data Encryption
· Enforce HTTPS with TLS 1.2 or higher for all API communications, ensuring data is encrypted during transit.

· Use strong encryption standards like AES for encrypting data at rest. Regularly rotate encryption keys and store them securely using tools like hardware security modules (HSMs) or key management services.
[bookmark: _r2baz9sql8se]3.3 Input Validation and Sanitization
· Implement strict input validation using whitelisting techniques, rejecting any requests that don't conform to expected patterns, lengths, or types.

· Sanitize all data received from clients to prevent common vulnerabilities, such as SQL Injection, Cross-Site Scripting (XSS), and Command Injection.
[bookmark: _jw3j30o1yp5w]3.4 Rate Limiting and Throttling
· Establish sensible rate limits based on typical user behavior to protect the API from overuse and potential Denial-of-Service (DoS) attacks.

· Implement throttling mechanisms to dynamically adjust user limits in response to suspicious activity or increased load.
[bookmark: _4z584n3t0u8x]3.5 Error Handling and Information Disclosure
· Design error responses that provide necessary information to the user without revealing sensitive system details or data.

· Implement comprehensive logging of errors for internal analysis, ensuring logs don't contain sensitive information.
[bookmark: _9v6efbbnsqkq]3.6 Versioning and Deprecation
· Use clear versioning strategies (like URL path or header-based versioning) for APIs to manage changes and maintain backward compatibility.

· Establish a structured deprecation policy for old API versions, providing adequate notice to consumers before discontinuation.
[bookmark: _bmsvq9smw01i]3.7 API Gateway and Security Policies
· Utilize an API gateway as a central point for imposing common security policies, including authentication, authorization, and rate limiting.

· Configure API gateways to perform security checks and block suspicious requests before they reach backend systems.
[bookmark: _6h5sv89a4ch8]3.8 Regular Security Audits and Penetration Testing
· Schedule and conduct regular security audits to review API design, implementation, and infrastructure against these practices.

· Perform penetration testing to identify and fix vulnerabilities, ideally using third-party security experts for unbiased assessment.
[bookmark: _2wmt3rhcjq8g]3.9 Documentation and Developer Education
· Maintain comprehensive, up-to-date API documentation, including security guidelines and best practices.

· Provide regular training for developers on secure coding practices, common vulnerabilities (like those listed in the OWASP Top 10), and emerging security threats.
[bookmark: _t35xxkuxteox]3.10 Logging, Monitoring, and Anomaly Detection
· Implement detailed logging for all API transactions. Store logs securely and analyze them regularly for signs of suspicious activity.

· Use real-time monitoring tools to track API performance and detect anomalies that could indicate a security breach.
[bookmark: _nhyxu59cm4ni]4. Compliance
Strict adherence to these Secure API Design Practices is required for all personnel involved in API development at [Company Name]. Non-compliance could lead to serious security breaches and will be addressed through disciplinary measures.
[bookmark: _48yn5amj7j4k]5. Governance
The API Security Governance Committee oversees this document and ensures compliance, reviews the practices regularly, and updates them as needed. All feedback for improvements should be directed to [Contact Information].


Secure API Design Practices 		Page 2 of 2

image1.png
KLC

CONSULTING

CMMC / AUTHORIZED C3PAO




